科目名	講義内容
データサイエンス A	社会におけるデータサイエンスの有用性を、データが用いら
	れる様々な分野の研究を知ることで学ぶ。また、データサイ
	エンスにおいて重要となる基礎的な統計解析と統計推測に
	ついて学ぶ。
データサイエンス B	数理・データサイエンス・AI が現在進行中の社会の変化に深
	く寄与していることと、その活用事例について概説した後、
	データからの情報抽出とグラフによる可視化、データ間の関
	係を表す共分散、相関係数の算出、最小2乗法による回帰直
	線などについて学ぶ。プログラミング演習は Python 言語を
	用いて行い、乱数によるモンテカルロ法やオープンデータの
	解析と可視化、機械学習によるクラスタリングなどの課題に
	取り組む。人工知能研究の歴史と倫理的問題、ニューラルネ
	ットワークを用 いた学習とAI技術の社会実装についても扱
	う。
データサイエンス C	データサイエンスの基礎となる情報科学の入門的な講義を
	行う。確率を用いて情報を定量化する方法、情報エントロピ
	一、条件付き確率とベイズの定理、情報の表現と符号化、情
	報圧縮、公開鍵暗号などについて解説する。実データを用い
	た情報圧縮の演習も行う。
データサイエンス D	基本的な論理演算ができる部品を組み合わせることによっ
	て、計算や記憶が可能になることを示し、情報を処理する手
	順(アルゴリズム)をいかに整理し、計算機向きに表現する
	かを扱う。Python 言語を用いたプログラミング演習も行う。
	講義の後半では人工知能研究の歴史と機械学習の基礎、ニュ
	ーラルネットワークを用いた深層学習とその応用事例につ
	いて解説し、量子計算等、計算機の新たな可能性についても
	述べる。
中級データサイエンス	高等学校において数学 III を習得した学生を対象として、デ
	ータサイエンスの数学的な道具としての確率・統計・検定に
	ついて講義する。応用例として機械学習などの実習も行う。
	基礎的な統計知識を、野球データを利用して実践的に学習す
科学	ることで、統計学への理解をより深めることを目的とする。
	打率や防御率などの伝統的な指標から、セイバーメトリクス
	と称される近年生まれた指標も紹介しつつ、それらの有用性
	を相関分析などで検証すること作業を通して、データの扱い

	方や各種検定方法を学習する。また、複数の指標を用いて重
	回帰式を作成して、戦術や戦略面での有効性(未来予測)に
	ついて考えていく。
R によるアンケート調査	R (RStudio) を用いて、再現可能性の高いアンケート調査の
の集計	集計に取り組むことにより、Rに慣れ親しむとともに、Rで
	の基本的なデータ処理や統計処理について学習する。より具
	体的には、学生調査などに代表されるアンケート調査を対象
	に、Rを用いて集計を行うことで、調査集計についての考え
	方とともに、データの前処理(データハンドリング)や、デ
	ータの可視化、レポート生成の技術について扱う。
応用データ処理技術	音声、画像、映像、主観的データなどのデータ収集や前処理
	では、物理学や認知科学的な知識が必要である。この授業で
	はプログラミング演習を交えながらこれらのデータの扱い
	方を学ぶ。具体的には、連続信号のデジタル化の原理と手法、
	メディアごとに異なるデータ表現や特徴抽出手法、教師なし
	学習と教師あり学習、主観的データの取得方法や分析手法、
	仮説検定である。プログラミングには Python を用い、Google
	Colaboratory を用いた各種プログラムの作成を通してスキ
	ルを習得する。
連接概念による数の見直	言葉やネットワークの生成で用いられている「つなぐ」とい
L	う連接概念をもとに、数や数についての操作についての分析
	を行うことを通して、数概念を理解し、数理的・論理的分析
	の方法を習得する。
線形性の使用から使える	比の概念と線形性を結びつけて考える視点から、線形代数・
本質・概念へ	微積分の概念・使用・本質・目的・動機・相互関連性を明ら
	かにし、これらの分野に対する理解を深め、効果的に使用で
	きるようにする。
社会におけるデータサイ	データサイエンス・AI が社会においてどのように活用されて
エンス	いるかを、具体的な事例を通して学ぶ。千葉大学学内、及び
	企業から講師を招いて統計科学の応用、医療分野におけるデ
	ータサイエンス・AI の活用、企業における大規模データの活
	用、深層学習の社会応用等についての講義を行い、データ活
	用社会の問題点と課題についても考察する。
機械学習実践入門	AI 技術の基礎的な概念と基礎的な機械学習アルゴリズムに
	ついて解説した後、これらのアルゴリズムを Python 言語の
	モジュールを用いて実装する演習を行う。これらの講義と演

	習を通して、機械学習の一般的な考え方、基礎的な教師あり
	学習とクラスタリングについて理解し、AI 技術の実問題への
	応用についての基礎的なスキルを習得する。
データクレンジング入門	ファイルの操作、数式や文字列の扱い、グループ集計、可視
	化等の演習を通して、誤りや欠損を含むデータを修正して分
	析しやすい形に整える技術について学び、対象データを目的
	に応じた適切な構造に加工・変換するスキルを習得する。
データクレンジング実践	総務省や経済産業省、国土交通省等が公開している人口、経
	済活動、不動産取引などの実データを用いて、対象データを
	目的に応じた適切な構造に加工して分析可能な形式に変換
	する実践的な演習を行い、様々なデータに対して、どのよう
	な構造のデータにすべきか、そのためにどのような処理が必
	要かを独力で設計することができる能力を養う。